A Global Jacobian Method for Mortar Discretizations of a Fully Implicit Two-Phase Flow Model
نویسندگان
چکیده
We consider a fully implicit formulation for two-phase flow in a porous medium with capillarity, gravity, and compressibility in three dimensions. The method is implicit in time and uses the multiscale mortar mixed finite element method for a spatial discretization in a nonoverlapping domain decomposition context. The interface conditions between subdomains are enforced in terms of Lagrange multiplier variables defined on a mortar space. The novel approach in this work is to linearize the coupled system of subdomain and mortar variables simultaneously to form a global Jacobian. This algorithm is shown to be more efficient and robust compared to previous algorithms that relied on two separate nested linearizations of subdomain and interface variables. We also examine various upwinding methods for accurate integration of phase mobility terms near subdomain interfaces. Numerical tests illustrate the computational benefits of this scheme.
منابع مشابه
SPE-172990-MS A Multiscale Mortar Method And Two-Stage Preconditioner For Multiphase Flow Using A Global Jacobian Approach
We consider a fully-implicit formulation for two-phase flow in a porous medium with capillarity, gravity, and compressibility in three dimensions. The method is implicit in time and uses the multiscale mortar mixed finite element method for spatial discretization in a non-overlapping domain decomposition context. The interface conditions between subdomains are enforced in terms of Lagrange mult...
متن کاملA Global Jacobian Method for Mortar Discretizations of Nonlinear Porous Media Flows
We describe a non-overlapping domain decomposition algorithm for nonlinear porous media flows discretized with the multiscale mortar mixed finite element method. There are two main ideas: (1) linearize the global system in both subdomain and interface variables simultaneously to yield a single Newton iteration; and (2) algebraically eliminate subdomain velocities (and optionally, subdomain pres...
متن کاملSimulation of Water Coning in Oil Reservoirs Using a Corrected IMPES Method
Implicit pressure-explicit saturation method (IMPES) is widely used in oil reservoir simulation to study the multiphase flow in porous media. This method has no complexity compared to the fully implicit method, although both of them are based on the finite difference technique. Water coning is one the most important phenomenon that affects the oil production from oil reservoirs having a water d...
متن کاملNumerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملAsphaltene Deposition Modeling during Natural Depletion and Developing a New Method for Multiphase Flash Calculation
The specific objective of this paper is to develop a fully implicit compositional simulator for modeling asphaltene deposition during natural depletion. In this study, a mathematical model for asphaltene deposition modeling is presented followed by the solution approach using the fully implicit scheme. A thermodynamic model for asphaltene precipitation and the numerical methods for performing f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 12 شماره
صفحات -
تاریخ انتشار 2014